Irodalomjegyzék
[Pálinkás et al.(2017)Pálinkás, Kollár, and Kégl]Pálinkás, N.;
Kollár, L.; Kégl, T. Viable pathways for the oxidative addition of
iodobenzene to palladium(0)-triphenylphosphine-carbonyl complexes: a
theoretical study. Dalton Trans. 2017, 46, 15789–15802.
[Hopkinson et al.(2014)Hopkinson, Richter, Schedler, and Glorius]
Hopkinson, M. N.; Richter, C.; Schedler, M.; Glorius, F. An overview of
N-heterocyclic carbenes. Nature 2014, 510, 485–496.
[Dixon et al.(1995)Dixon, Arduengo III, Dobbs, and Khasnis]
Dixon, D. A.; Arduengo III, A. J.; Dobbs, K. D.; Khasnis, D. V. On
the proposed existence of a ketene derived from carbon monoxide and 1,
3-di-1-adamantylimidazol-2-ylidene. Tetrahedron Lett. 1995, 36, 645–648.
[McAuliffe(1973)]McAuliffe, C. A. Transition metal complexes of phosphorus,
arsenic and antimony ligands; Halsted Press, 1973.
[Tolman(1977)]Tolman, C. A. Steric Effects of Phosphorus Ligands in
Organometallic Chemistry and Homogeneous Catalysis. Chem. Rev. 1977,
77, 313–348.
[Hartwig and Collman(2010)Hartwig, and Collman]
Hartwig, J. F.; Collman, J. P. Organotransition metal chemistry: from
bonding to catalysis; University Science Books Sausalito, CA, 2010.
[Kollár and Keglevich(2010)Kollár, and Keglevich]
Kollár, L.; Keglevich, G. P-heterocycles as ligands in homogeneous
catalytic reactions. Chem. Rev. 2010, 110, 4257–4302.
[Jover et al.(2010)Jover, Fey, Harvey, Lloyd-Jones, Orpen, Owen-Smith, Murray, Hose, Osborne, and Purdie]
Jover, J.; Fey, N.; Harvey, J. N.; Lloyd-Jones, G. C.; Orpen, A. G.;
Owen-Smith, G. J.; Murray, P.; Hose, D. R.; Osborne, R.; Purdie, M.
Expansion of the ligand knowledge base for monodentate P-donor ligands
(LKB-P). Organometallics 2010, 29, 6245–6258.
[Jover et al.(2012)Jover, Fey, Harvey, Lloyd-Jones, Orpen, Owen-Smith, Murray, Hose, Osborne, and Purdie]
Jover, J.; Fey, N.; Harvey, J. N.; Lloyd-Jones, G. C.; Orpen, A. G.;
Owen-Smith, G. J.; Murray, P.; Hose, D. R.; Osborne, R.; Purdie, M.
Expansion of the ligand knowledge base for chelating P, P-donor ligands
(LKB-PP). Organometallics 2012, 31, 5302–5306.
[Brown and Lee(1993)Brown, and Lee]Brown, T. L.; Lee, K. J. Ligand steric
properties. Coord. Chem. Rev. 1993, 128, 89–116.
[Dias et al.(1994)Dias, de Piedade, and Simões]Dias, P. B.;
de Piedade, M. E. M.; Simões, J. A. M. Bonding and energetics of
phosphorus (III) ligands in transition metal complexes. Coord. Chem. Rev.
1994, 135, 737–807.
[Kamer et al.(2001)Kamer, van Leeuwen, and Reek]Kamer, P. C.; van
Leeuwen, P. W.; Reek, J. N. Wide bite angle diphosphines: Xantphos
ligands in transition metal complexes and catalysis. Acc. Chem. Res.
2001, 34, 895–904.
[Kühl(2005)]Kühl, O. Predicting the net donating ability of phosphines do
we need sophisticated theoretical methods? Coord. Chem. Rev. 2005, 249,
693 – 704.
[de Vries and Lefort(2006)de Vries, and Lefort]
de Vries, J. G.; Lefort, L. The combinatorial approach to asymmetric
hydrogenation: phosphoramidite libraries, ruthenacycles, and artificial
enzymes. Chem.–Eur. J. 2006, 12, 4722–4734.
[Botteghi et al.(1991)Botteghi, Paganelli, Schionato, and Marchetti]
Botteghi, C.; Paganelli, S.;
Schionato, A.; Marchetti, M. The asymmetric hydroformylation in the
synthesis of pharmaceuticals. Chirality 1991, 3, 355–369.
[Hayashi(2000)]Hayashi, T. Chiral monodentate phosphine ligand MOP for
transition-metal-catalyzed asymmetric reactions. Acc. Chem. Res. 2000,
33, 354–362.
[Knowles(2002)]Knowles, W. S. Asymmetric hydrogenations (Nobel lecture).
Angew. Chem. Int. Ed. 2002, 1998–2007.
[Colacot(2003)]Colacot, T. J. A concise update on the applications of chiral
ferrocenyl phosphines in homogeneous catalysis leading to organic
synthesis. Chem. Rev. 2003, 103, 3101–3118.
[Hoen et al.(2004)Hoen, van den Berg, Bernsmann, Minnaard, de Vries, and Feringa]
Hoen, R.; van den Berg, M.; Bernsmann, H.; Minnaard, A. J.;
de Vries, J. G.; Feringa, B. L. Catechol-based phosphoramidites: A new
class of chiral ligands for rhodium-catalyzed asymmetric hydrogenations.
Org. Lett. 2004, 6, 1433–1436.
[Lefort et al.(2004)Lefort, Boogers, de Vries, and de Vries]Lefort, L.;
Boogers, J. A.; de Vries, A. H.; de Vries, J. G. Instant ligand libraries.
Parallel synthesis of monodentate phosphoramidites and in situ screening
in asymmetric hydrogenation. Org. Lett. 2004, 6, 1733–1735.
[Minnaard et al.(2007)Minnaard, Feringa, Lefort, and de Vries]
Minnaard, A. J.;
Feringa, B. L.; Lefort, L.; de Vries, J. G. Asymmetric Hydrogenation
Using Monodentate Phosphoramidite Ligands. Acc. Chem. Res. 2007, 40,
1267–1277.
[van Leeuwen et al.(2010)van Leeuwen, Kamer, Claver, Pamies, and Dieguez]
van Leeuwen, P. W.; Kamer, P. C.; Claver, C.;
Pamies, O.; Dieguez, M. Phosphite-containing ligands for asymmetric
catalysis. Chem. Rev. 2010, 111, 2077–2118.
[Fernández-Pérez et al.(2011)Fernández-Pérez, Etayo, Panossian, and Vidal-Ferran]
Fernández-Pérez, H.; Etayo, P.; Panossian, A.; Vidal-Ferran, A.
Phosphine- phosphinite and phosphine- phosphite ligands: preparation
and applications in asymmetric catalysis. Chem. Rev. 2011, 111,
2119–2176.
[Kégl and Kollár(2013)Kégl, and Kollár]Kégl, T.; Kollár, L.
Comprehensive Inorganic Chemistry II (Second Edition): From Elements
to Applications; Elsevier Ltd, 2013.
[Strohmeier and Müller(1967)Strohmeier, and Müller]Strohmeier, W.;
Müller, F.-J. Klassifizierung phosphorhaltiger Liganden in
Metallcarbonyl-Derivaten nach der π-Acceptorstärke. Chem. Ber. 1967,
100, 2812–2821.
[Tolman(1970)]Tolman, C. A. Electron donor-acceptor properties of
phosphorus ligands. Substituent additivity. J. Am. Chem. Soc. 1970, 92,
2953–2956.
[Strohmeier and Müller(1967)Strohmeier, and Müller]
Strohmeier, W.; Müller, F.-J. π-Acceptorstärke von Phosphinen als
Liganden in Cyclopentadienylmangantricarbonyl und Nickelcarbonyl. Z.
Naturforschg. 1967, 22b, 451–452.
[Kégl et al.(2016)Kégl, Kollár, and Kégl]Kégl, T. R.; Kollár, L.;
Kégl, T. Relationship of QTAIM and NOCV Descriptors with Tolman’s
Electronic Parameter. Adv. Chem. 2016, 4109758.
[Anton and Crabtree(1983)Anton, and Crabtree]
Anton, D. R.; Crabtree, R. H. Metalation-resistant ligands: some
properties of dibenzocyclooctatetraene complexes of molybdenum,
rhodium and iridium. Organometallics 1983, 2, 621–627.
[Kégl et al.(2018)Kégl, Pálinkás, Kollár, and Kégl]Kégl, T.;
Pálinkás, N.; Kollár, L.; Kégl, T. Computational Characterization
of Bidentate P-Donor Ligands: Direct Comparison to Tolman’s Electronic
Parameters. Molecules 2018, 23, 3176.
[Valyaev et al.(2011)Valyaev, Brousses, Lugan, Fernández, and Sierra]
Valyaev, D. A.; Brousses, R.; Lugan, N.; Fernández, I.; Sierra, M. A.
Do ν(CO) Stretching Frequencies in Metal Carbonyl Complexes
Unequivocally Correlate with the Intrinsic Electron-Donicity of Ancillary
Ligands? Chem.–Eur. J. 2011, 17, 6602–6605.
[Ciancaleoni et al.(2014)Ciancaleoni, Scafuri, Bistoni, Macchioni, Tarantelli, Zuccaccia, and Belpassi]
Ciancaleoni, G.; Scafuri, N.; Bistoni, G.; Macchioni, A.; Tarantelli, F.;
Zuccaccia, D.; Belpassi, L. When the Tolman Electronic Parameter
Fails: A Comparative DFT and Charge Displacement Study of
[(L)Ni(CO)3]0/−and
[(L)Au(CO)]0/+. Inorg. Chem. 2014, 53, 9907–9916.
[Snelders et al.(2011)Snelders, Van Koten, and Klein Gebbink]
Snelders, D. J.; Van Koten, G.; Klein Gebbink, R. J. Steric,
electronic, and secondary effects on the coordination chemistry of ionic
phosphine ligands and the catalytic behavior of their metal complexes.
Chem.–Eur. J. 2011, 17, 42–57.
[Bartik and Himmler(1985)Bartik, and Himmler]Bartik, T.;
Himmler, T. Bestimmung der raumerfüllung von tertiären phosphanen
über 31
P-NMR-spektroskopische daten von trans-L2PdCl2-komplexen.
J. Organomet. Chem. 1985, 293, 343–351.
[Bartik et al.(1993)Bartik, Bartik, Hanson, Guo, and Tóth]
Bartik, T.; Bartik, B.; Hanson, B. E.; Guo, I.; Tóth, I. Water-soluble
electron-donating phosphines:
sulfonation of tris(ω-phenylalkyl) phosphines. Organometallics 1993, 12,
164–170.
[Chalker et al.(2024)Chalker, Lee, and Perutz]Chalker, P.; Lee, B.;
Perutz, R. Investigating the diastereoselective synthesis of a macrocycle
under Curtin–Hammett control. Chem. Sci. 2024, 8, 5392.
[Bishop III(1976)]Bishop III, K. Transition metal catalyzed rearrangements
of small ring organic molecules. Chem. Rev. 1976, 76, 461–486.
[Liu et al.(2019)Liu, Li, and Liu]Liu, X.; Li, B.; Liu, Q.
Base-metal-catalyzed olefin isomerization reactions. Synthesis 2019, 51,
1293–1310.
[Diederich and de Mejiere(2004)Diederich, and de Mejiere]Diederich, F.,
de Mejiere, A., Eds. Metal Catalyzed Cross-Coupling Reactions; Wiley,
New York, 2004.
[Nicolaou et al.(2005)Nicolaou, Bulger, and Sarlah]Nicolaou, K. C.;
Bulger, P. G.; Sarlah, D. Palladium-Catalyzed Cross-Coupling
Reactions in Total Synthesis. Angew. Chem. Int. Ed. 2005, 44, 4442–4489.
[Miyaura and Suzuki(1995)Miyaura, and Suzuki]Miyaura, N.; Suzuki, A.
Palladium-catalyzed cross-coupling reactions of organoboron compounds.
Chem. Rev. 1995, 95, 2457–2483.
[Johansson Seechurn et al.(2012)Johansson Seechurn, Kitching, Colacot, and Snieckus]
Johansson Seechurn, C. C.; Kitching, M. O.; Colacot, T. J.;
Snieckus, V. Palladium-catalyzed cross-coupling: a historical contextual
perspective to the 2010 Nobel Prize. Angew. Chem. Int. Ed. 2012, 51,
5062–5085.
[Jana et al.(2011)Jana, Pathak, and Sigman]
Jana, R.; Pathak, T. P.; Sigman, M. S. Advances in transition metal
(Pd, Ni, Fe)-catalyzed cross-coupling reactions using alkyl-organometallics
as reaction partners. Chem. Rev. 2011, 111, 1417–1492.
[Fortman and Nolan(2011)Fortman, and Nolan]
Fortman, G. C.; Nolan, S. P. N-Heterocyclic carbene (NHC) ligands and
palladium in homogeneous cross-coupling catalysis: a perfect union. Chem.
Soc. Rev. 2011, 40, 5151–5169.
[Csákai et al.(1999)Csákai, Skoda-Földes, and Kollár]Csákai, Z.;
Skoda-Földes, R.; Kollár, L. NMR investigation of Pd(II)-Pd(0)
reduction in the presence of mono- and ditertiary phosphines. Inorg. Chim.
Acta 1999, 286, 93–97.
[Mizoroki et al.(1971)Mizoroki, Mori, and Ozaki]Mizoroki, T.; Mori, K.;
Ozaki, A. Arylation of olefin with aryl iodide catalyzed by palladium.
Bull. Chem. Soc. Jpn. 1971, 44, 581–581.
[Heck and Nolley Jr(1972)Heck, and Nolley Jr]Heck, R. F.;
Nolley Jr, J. Palladium-catalyzed vinylic hydrogen substitution reactions
with aryl, benzyl, and styryl halides. J. Org. Chem. 1972, 37, 2320–2322.
[Schoenberg et al.(1974)Schoenberg, Bartoletti, and Heck]Schoenberg, A.;
Bartoletti, I.; Heck, R. F. Palladium-catalyzed carboalkoxylation of aryl,
benzyl, and vinylic halides. J. Org. Chem. 1974, 39, 3318–3326.
[Schoenberg and Heck(1974)Schoenberg, and Heck]Schoenberg, A.;
Heck, R. F. Palladium-catalyzed formylation of aryl, heterocyclic, and
vinylic halides. J. Am. Chem. Soc. 1974, 96, 7761–7764.
[Schoenberg and Heck(1974)Schoenberg, and Heck]Schoenberg, A.;
Heck, R. F. Palladium-catalyzed amidation of aryl, heterocyclic, and
vinylic halides. J. Org. Chem. 1974, 39, 3327–3331.
[Miyaura and Suzuki(1979)Miyaura, and Suzuki]
Miyaura, N.; Suzuki, A. Stereoselective synthesis of arylated (E)-alkenes
by the reaction of alk-1-enylboranes with aryl halides in the presence of
palladium catalyst. J. Chem. Soc., Chem. Commun. 1979, 866–867.
[Miyaura et al.(1979)Miyaura, Yamada, and Suzuki]
Miyaura, N.; Yamada, K.; Suzuki, A. A new stereospecific cross-coupling
by the palladium-catalyzed reaction of 1-alkenylboranes with 1-alkenyl or
1-alkynyl halides. Tetrahedron Lett. 1979, 20, 3437–3440.
[Sonogashira et al.(1975)Sonogashira, Tohda, and Hagihara]Sonogashira, K.;
Tohda, Y.; Hagihara, N. A convenient synthesis of acetylenes: catalytic
substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and
bromopyridines. Tetrahedron Lett. 1975, 16, 4467–4470.
[Stille(1986)]Stille, J. K. The Palladium-Catalyzed Cross-Coupling Reactions
of Organotin Reagents with Organic Electrophiles [New Synthetic
Methods (58)]. Angew. Chem. Int. Ed. Engl. 1986, 25, 508–524.
[King et al.(1977)King, Okukado, and Negishi]
King, A. O.; Okukado, N.; Negishi, E.-i. Highly general stereo-, regio-,
and chemo-selective synthesis of terminal and internal conjugated enynes
by the Pd-catalysed reaction of alkynylzinc reagents with alkenyl halides.
J. Chem. Soc., Chem. Commun. 1977, 683–684.
[Tamao et al.(1972)Tamao, Sumitani, and Kumada]Tamao, K.;
Sumitani, K.; Kumada, M. Selective carbon-carbon bond formation by
cross-coupling of Grignard reagents with organic halides. Catalysis by
nickel-phosphine complexes. J. Am. Chem. Soc. 1972, 94, 4374–4376.
[Hatanaka and Hiyama(1988)Hatanaka, and Hiyama]
Hatanaka, Y.; Hiyama, T. Cross-coupling of organosilanes with organic
halides mediated by a palladium catalyst and tris(diethylamino)sulfonium
difluorotrimethylsilicate. J. Org. Chem. 1988, 53, 918–920.
[Denmark and Yang(2002)Denmark, and Yang]Denmark, S. E.; Yang, S.-M.
Intramolecular silicon-assisted cross-coupling reactions: General synthesis
of medium-sized rings containing a 1,3-cis-cis diene unit. J. Am. Chem.
Soc. 2002, 124, 2102–2103.
[Forero-Cortés and Haydl(2019)Forero-Cortés, and Haydl]
Forero-Cortés, P. A.; Haydl, A. M. The 25th anniversary of the
Buchwald–Hartwig amination: development, applications, and outlook.
Org. Process Res. Dev. 2019, 23, 1478–1483.
[Yin and Liebscher(2007)Yin, and Liebscher]Yin, L.; Liebscher, J. Carbon-
carbon coupling reactions catalyzed by heterogeneous palladium catalysts.
Chem. Rev. 2007, 107, 133–173.
[Ishiyama et al.(1998)Ishiyama, Kizaki, Hayashi, Suzuki, and Miyaura]
Ishiyama, T.; Kizaki, H.; Hayashi, T.; Suzuki, A.; Miyaura, N.
Palladium-catalyzed carbonylative cross-coupling reaction of arylboronic
acids with aryl electrophiles: Synthesis of biaryl ketones. J. Org. Chem.
1998, 63, 4726–4731.
[Wu et al.(2010)Wu, Neumann, Spannenberg, Schulz, Jiao, and Beller]
Wu, X.-F.; Neumann, H.; Spannenberg, A.; Schulz, T.; Jiao, H.;
Beller, M. Development of a general palladium-catalyzed carbonylative
Heck reaction of aryl halides. J. Am. Chem. Soc 2010, 132, 14596–14602.
[Mohamed Ahmed and Mori(2003)Mohamed Ahmed, and Mori]
Mohamed Ahmed, M. S.; Mori, A. Carbonylative sonogashira coupling
of terminal alkynes with aqueous ammonia. Org. Lett. 2003, 5, 3057–3060.
[Wu et al.(2012)Wu, Schranck, Neumann, and Beller]
Wu, X.-F.; Schranck, J.; Neumann, H.; Beller, M. Palladium-Catalyzed
Carbonylative Negishi-type Coupling of Aryl Iodides with Benzyl
Chlorides. Chem. Asian J. 2012, 7, 40–44.
[Prasad and Satyanarayana(2013)Prasad, and Satyanarayana]
Prasad, A. S.; Satyanarayana, B. Fe3O4 supported Pd(0) nanoparticles
catalyzed alkoxycarbonylation of aryl halides. J. Mol. Catal. A: Chem.
2013, 370, 205–209.
[Roelen(German Patent DE 849548, 1938/1952; U.S. Patent 2327066, 1943)]
Roelen, O. (to Chemische Verwertungsgesellschaft Oberhausen m.b.H.).
German Patent DE 849548, 1938/1952; U.S. Patent 2327066, 1943.
[Hebrard and Kalck(2009)Hebrard, and Kalck]
Hebrard, F.; Kalck, P. Cobalt-Catalyzed Hydroformylation of Alkenes:
Generation and Recycling of the Carbonyl Species, and Catalytic Cycle.
Chem. Rev. 2009, 109, 4272–4282.
[van Leeuwen et al.(2000)van Leeuwen, Casey, and Whiteker]
van Leeuwen, P. W. N. M.; Casey, C. P.; Whiteker, G. T. In Rhodium
Catalyzed Hydroformylation; van Leeuwen, P. W. N. M., Claver, C.,
Eds.; Kluwer Academic Publishers: Dordrecht, Netherlands, 2000; pp
63–106.
[Whiteker and Cobley(2012)Whiteker, and Cobley]Whiteker, G. T.;
Cobley, C. J. Applications of Rhodium-Catalyzed Hydroformylation
in the Pharmaceutical, Agrochemical, and Fragrance Industries. Top.
Organomet. Chem. 2012, 42, 35–46.
[Trzeciak and Ziółkowski(1999)Trzeciak, and Ziółkowski]
Trzeciak, A. M.; Ziółkowski, J. Perspectives of rhodium organometallic
catalysis. Fundamental and applied aspects of hydroformylation. Coord.
Chem. Rev. 1999, 190-192, 883–900.
[van Duren et al.(2007)van Duren, van der Vlugt, Kooijman, Spek, and Vogt]
van Duren, R.; van der Vlugt, J. I.; Kooijman, H.; Spek, A. L.;
Vogt, D. Platinum-catalyzed hydroformylation of terminal and internal
octenes. Dalton Trans. 2007, 1053–1059.
[Piras et al.(2011)Piras, Jennerjahn, Jackstell, Spannenberg, Franke, and Beller]
Piras, I.; Jennerjahn, R.; Jackstell, R.; Spannenberg, A.; Franke, R.;
Beller, M. A General and Efficient Iridium-Catalyzed Hydroformylation
of Olefins. Angew. Chem., Int. Ed. 2011, 50, 280–284.
[Wiese and Obst(2006)Wiese, and Obst]Wiese, K.-D.; Obst, D. In Catalytic
Carbonylation Reactions; Beller, M., Ed.; Springer Berlin Heidelberg:
Berlin, Heidelberg, 2006; Chapter Hydroformylation, pp 1–33.
[Eilbracht et al.(1999)Eilbracht, F.ärfacker, Buss, Hollmann, Kitsos-Rzychon, Kranemann, Rische, Roggenbuck, and Schmidt]
Eilbracht, P.; F.ärfacker, L.; Buss, C.; Hollmann, C.;
Kitsos-Rzychon, B. E.; Kranemann, C. L.; Rische, T.; Roggenbuck, R.;
Schmidt, A. Tandem Reaction Sequences under Hydroformylation
Conditions: New Synthetic Applications of Transition Metal Catalysis.
Chem. Rev. 1999, 99, 3329–3366.
[Ungváry(1995)]Ungváry, F. Transition metals in organic synthesis:
hydroformylation, reduction, and oxidation. Annual survey covering the
year 1993. Coord. Chem. Rev. 1995, 141, 371–493.
[Ungváry(2007)]Ungváry, F. Application
of transition metals in hydroformylation: Annual survey covering the year
2005. Coord. Chem. Rev. 2007, 251, 2072–2086.
[Ungváry(2007)]Ungváry, F. Application
of transition metals in hydroformylation: Annual survey covering the year
2006. Coord. Chem. Rev. 2007, 251, 2087–2102.
[Pospech et al.(2013)Pospech, Fleischer, Franke, Buchholz, and Beller]
Pospech, J.;
Fleischer, I.; Franke, R.; Buchholz, S.; Beller, M. Alternative Metals for
Homogeneous Catalyzed Hydroformylation Reactions. Angew. Chem., Int.
Ed. 2013, 52, 2852–2872.
[Franke et al.(2012)Franke, Selent, and Boerner]
Franke, R.; Selent, D.; Boerner, A. Applied Hydroformylation. Chem.
Rev. 2012, 112, 5675–5732.
[Kégl(2015)]Kégl, T. Computational aspects of hydroformylation. RSC
Advances 2015, 5, 4304–4327.
[Antolovic and Davidson(1987)Antolovic, and Davidson]Antolovic, D.;
Davidson, E. R. Theoretical study of hydridocobalt carbonyls. J. Am.
Chem. Soc. 1987, 109, 977–985.
[Antolovic and Davidson(1987)Antolovic, and Davidson]Antolovic, D.;
Davidson, E. R. A theoretical study of some cobalt carbonyl complexes
present in the catalytic cycle of hydroformylation. J. Am. Chem. Soc.
1987, 109, 5828–5840.
[Huo et al.(2003)Huo, Li, Beller, and Jiao]Huo, C.-F.; Li, Y.-W.; Beller, M.;
Jiao, H. HCo(CO)3-Catalyzed Propene Hydroformylation. Insight into
Detailed Mechanism. Organometallics 2003, 22, 4665–4677.
[Decker and Cundari(2001)Decker, and Cundari]Decker, S. A.;
Cundari, T. R. DFT Study of the Ethylene Hydroformylation Catalytic
Cycle Employing a HRh(PH3)2(CO) Model Catalyst. Organometallics
2001, 20, 2827–2841.
[da Silva et al.(2010)da Silva, Dias, de Almeida, and Rocha]da Silva, J.
C. S.; Dias, R. P.; de Almeida, W. B.; Rocha, W. R. DFT study of
the full catalytic cycle for the propene hydroformylation catalyzed by a
heterobimetallic HPt(SnCl3)(PH32 model catalyst. J. Comput. Chem.
2010, 31, 1986–2000.
[Wender et al.(1953)Wender, Sternberg, and Orchin]Wender, I.;
Sternberg, H. W.; Orchin, M. Evidence for cobalt hydrocarbonyl as the
hydroformylation catalyst. J. Am. Chem. Soc. 1953, 75, 3041–3042.
[McNeill and Scholer(1977)McNeill, and Scholer]
McNeill, E. A.; Scholer, F. R. Molecular Structure of the Gaseous Metal
Carbonyl Hydrides of Manganese, Iron, and Cobalt. J. Am. Chem. Soc.
1977, 99, 6243–6249.
[Heck and Breslow(1961)Heck, and Breslow]Heck, R. F.; Breslow, D. S. The
Reaction of Cobalt Hydrotetracarbonyl with Olefins. J. Am. Chem. Soc.
1961, 83, 4023–4027.
[Wermer et al.(1978)Wermer, Ault, and Orchin]
Wermer, P.; Ault, B. S.; Orchin, M. Transient species of importance in
the stoichiometric hydroformylation reaction I. Evidence for HCo(CO)3
by matrix isolation. J. Organomet. Chem. 1978, 162, 189–194.
[Wegman and Brown(1980)Wegman, and Brown]Wegman, R. W.;
Brown, T. L. Photochemical and thermal decomposition of
hydridotetracarbonylcobalt(I). Evidence for a radical pathway involving
octacarbonyldicobalt. J. Am. Chem. Soc. 1980, 102, 2494–2495.
[Ungváry and Markó(1980)Ungváry, and Markó]Ungváry, F.;
Markó, L. The effect of Co2(CO)8 on the decomposition of CoH(CO)4.
J. Organomet. Chem. 1980, 193, 383–387.
[Barckholtz and Bursten(2000)Barckholtz, and Bursten]
Barckholtz, T. A.; Bursten, B. E. Density functional calculations of
dinuclear organometallic carbonyl complexes. Part I: metal-metal and
metal-CO bond energies. J. Organomet. Chem. 2000, 596, 212–220.
[Rathke et al.(1992)Rathke, Klingler, and Krause]Rathke, J. W.;
Klingler, R. J.; Krause, T. R. Thermodynamics for the hydrogenation
of dicobalt octacarbonyl in supercritical carbon dioxide. Organometallics
1992, 11, 585–588.
[Klingler and Rathke(1994)Klingler, and Rathke]Klingler, R. J.;
Rathke, J. W. High-Pressure NMR Investigation of Hydrogen Atom
Transfer and Related Dynamic Processes in Oxo Catalysis. J. Am. Chem.
Soc. 1994, 116, 4772–4785.
[Haumann et al.(2003)Haumann, Koch, and Schomäcker]Haumann, M.;
Koch, H.; Schomäcker, R. Hydroformylation in microemulsions:
conversion of an internal long chain alkene into a linear aldehyde using a
water soluble cobalt catalyst. Catal. Today 2003, 79, 43–49.
[Hébrard et al.(2007)Hébrard, Kalck, Saussine, Magna, and Olivier-Bourbigou]
Hébrard, F.; Kalck, P.; Saussine, L.; Magna, L.; Olivier-Bourbigou, H.
Unexpected reduction pathway of a Co2+ salt to
[HCo(CO)4] via
[Co2(CO)8] in an ionic liquid. Dalton Trans. 2007, 190–191.
[Hsu and Orchin(1975)Hsu, and Orchin]Hsu, C. Y.; Orchin, M.
Hydridotrichlorostannatocarbonylbis(triphenylphosphine)platinum(II),
PtH(SnCl3)(CO)(PPh3)2, as a selective hydroformylation catalyst. J.
Am. Chem. Soc. 1975, 97, 3553–3553.
[Schwager and Knifton(1976)Schwager, and Knifton]Schwager, I.; Knifton, J.
Homogeneous olefin hydroformylation catalyzed by ligand stabilized
platinum(II)-group IVB metal halide complexes. J. Catal. 1976, 45,
256–267.
[Kollár et al.(1993)Kollár, Kégl, and Bakos]Kollár, L.; Kégl, T.;
Bakos, J. Pt-tin(II) fluoride. J. Organomet. Chem. 1993, 453, 155–158.
[Moreno et al.(2005)Moreno, Haukka, Turunen, and Pakkanen]
Moreno, M. A.; Haukka, M.; Turunen, A.; Pakkanen, T. A. Monomeric
ruthenium carbonyls... J. Mol. Catal. A: Chem. 2005, 240, 7–15.
[Gleich et al.(1998)Gleich, Schmid, and Herrmann]Gleich, D.;
Schmid, R.; Herrmann, W. A. A Molecular Model To Explain and
Predict the Stereoselectivity in Rhodium-Catalyzed Hydroformylation.
Organometallics 1998, 17, 2141–2143.
[Gleich and Herrmann(1999)Gleich, and Herrmann]Gleich, D.;
Herrmann, W. A. Why Do Many C2-Symmetric Bisphosphine Ligands
Fail in Asymmetric Hydroformylation? Theory in Front of Experiment.
Organometallics 1999, 18, 4354–4361.
[Gleich et al.(1998)Gleich, Schmid, and Herrmann]
Gleich, D.; Schmid, R.; Herrmann, W. A. A Combined QM/MM
Method for the Determination of Regioselectivities in Rhodium-Catalyzed
Hydroformylation. Organometallics 1998, 17, 4828–4834.
[Alagona et al.(2001)Alagona, Ghio, Lazzaroni, and Settambolo]
Alagona, G.; Ghio, C.; Lazzaroni, R.; Settambolo, R. Olefin Insertion
into the Rhodium-Hydrogen Bond as the Step Determining the
Regioselectivity of Rhodium-Catalyzed Hydroformylation of Vinyl
Substrates: Comparison between Theoretical and Experimental Results.
Organometallics 2001, 20, 5394–5404.
[Alagona and Ghio(2012)Alagona, and Ghio]Alagona, G.; Ghio, C. The fate
of branched and linear isomers in the rhodium-catalyzed hydroformylation
of 3,4,4-trimethylpent-1-ene. Theor. Chem. Acc. 2012, 131, 1142–1161.
[Alagona and Ghio(2005)Alagona, and Ghio]
Alagona, G.; Ghio, C. Alkyl-rhodium transition state stabilities as a tool
to predict regio- and stereoselectivity in the hydroformylation of chiral
substrates. J. Organomet. Chem. 2005, 690, 2339–2350.
[Alagona et al.(2004)Alagona, Ghio, Lazzaroni, and Settambolo]
Alagona, G.; Ghio, C.; Lazzaroni, R.; Settambolo, R. Markedly different
selectivity in the rhodium catalyzed hydroformylation of vinyl olefins
containing a chiral alkoxy or alkyl group: good agreement between theory
and experiment. Inorg. Chim. Acta 2004, 357, 2980–2988.
[Alagona et al.(2007)Alagona, Ghio, and Rocchiccioli]Alagona, G.; Ghio, C.;
Rocchiccioli, S. Computational prediction of the regio- and
diastereoselectivity in a rhodium-catalyzed hydroformylation/cyclization
domino process. J. Mol. Model. 2007, 13, 823–837.
[Alagona et al.(2006)Alagona, Lazzaroni, Rocchiccioli, and Settambolo]
Alagona, G.; Lazzaroni, R.; Rocchiccioli, S.; Settambolo, R. Complete
1,3-Asymmetric Induction into 3-Methyl-4-(3-Acetylpyrrol-1- yl)Butanal
to 1-Acetyl-6-Methyl-8-Hydroxy-5,6,7,8-Tetrahydroindolizine Cyclization.
Lett. Org. Chem. 2006, 3, 10–12.
[Lazzaroni et al.(2010)Lazzaroni, Settambolo, Alagona, and Ghio]
Lazzaroni, R.; Settambolo, R.; Alagona, G.; Ghio, C. Investigation
of alkyl metal intermediate formation in the rhodium-catalyzed
hydroformylation: Experimental and theoretical approaches. Coord.
Chem. Rev. 2010, 254, 696–706.
[Lazzaroni et al.(1989)Lazzaroni, Uccello-Barretta, and Benetti]
Lazzaroni, R.; Uccello-Barretta, G.;
Benetti, M. Reversibility of metal-alkyl intermediate formation in the
rhodium-catalyzed deuterioformylation of 1-hexene. Organometallics
1989, 8, 2323–2327.
[Raffaelli et al.(1991)Raffaelli, Pucci, Settambolo, Uccello-Barretta, and Lazzaroni]
Raffaelli, A.; Pucci, S.; Settambolo, R.; Uccello-Barretta, G.;
Lazzaroni, R. Inter- and intramolecular protium-deuterium exchange in
the rhodium-catalyzed deuterioformylation of styrene. Organometallics
1991, 10, 3892–3898.
[Lazzaroni et al.(1995)Lazzaroni, Settambolo, and Uccello-Barretta]
Lazzaroni, R.; Settambolo, R.;
Uccello-Barretta, G. .beta.-Hydride Elimination and Regioselectivity in
the Rhodium-Catalyzed Hydroformylation of Open Chain Unsaturated
Ethers. Organometallics 1995, 14, 4644–4650.
[Lazzaroni et al.(1996)Lazzaroni, Uccello-Barretta, Scamuzzi, Settambolo, and Caiazzo]
Lazzaroni, R.; Uccello-Barretta, G.; Scamuzzi, S.; Settambolo, R.;
Caiazzo, A. 2H NMR Investigation of the Rhodium-Catalyzed
Deuterioformylation of 1,1-Diphenylethene: Evidence for the Formation
of a Tertiary Alkyl-Metal Intermediate. Organometallics 1996, 15,
4657–4659.
[Carbó et al.(2001)Carbó, Maseras, Bo, and van Leeuwen]Carbó, J. J.;
Maseras, F.; Bo, C.; van Leeuwen, P. W. N. M. Unraveling the Origin of
Regioselectivity in Rhodium Diphosphine Catalyzed Hydroformylation. A
DFT QM/MM Study. J. Am. Chem. Soc. 2001, 123, 7630–7637, PMID:
11480985.
[Zuidema et al.(2008)Zuidema, Escorihuela, Eichelsheim, Carbó, Bo, Kamer, and van Leeuwen]
Zuidema, E.; Escorihuela, L.; Eichelsheim, T.; Carbó, J. J.; Bo, C.;
Kamer, P. C. J.; van Leeuwen, P. W. N. M. The Rate-Determining
Step in the Rhodium–Xantphos-Catalysed Hydroformylation of 1-Octene.
Chem. Eur. J. 2008, 14, 1843–1853.
[Landis and Uddin(2002)Landis, and Uddin]Landis, C. R.; Uddin, J.
Quantum mechanical modelling of alkene hydroformylation as catalyzed
by xantphos-Rh complexes. J. Chem. Soc., Dalton Trans. 2002, 729–742.
[Watkins and Landis(2000)Watkins, and Landis]Watkins, A. L.;
Landis, C. R. Origin of Pressure Effects on Regioselectivity and
Enantioselectivity in the Rhodium-Catalyzed Hydroformylation of Styrene
with (S,S,S)-BisDiazaphos. J. Am. Chem. Soc. 2000, 132, 10306–10317.
[Consiglio and Pino(1982)Consiglio, and Pino]Consiglio, G.; Pino, P.
Asymmetric hydroformylation. Top. Curr. Chem. 1982, 105, 77–123.
[Knowles(1983)]Knowles, W. S. Asymmetric hydrogenation. Acc. Chem. Res.
1983, 16, 106–112.
[Cavinato and Toniolo(1990)Cavinato, and Toniolo]Cavinato, G.; Toniolo, L.
On the mechanism of the hydrocarbalkoxylation of olefins catalyzed by
palladium complexes. J. Organomet. Chem. 1990, 398, 187–195.
[Guiu et al.(2006)Guiu, Caporali, Munoz, Müller, Lutz, Spek, Claver, and van Leeuwen]
Guiu, E.; Caporali, M.; Munoz, B.; Müller, C.; Lutz, M.; Spek, A. L.;
Claver, C.; van Leeuwen, P. W. Electronic effect of diphosphines on the
regioselectivity of the palladium-catalyzed hydroesterification of styrene.
Organometallics 2006, 25, 3102–3104.
[Godard et al.(2008)Godard, Muñoz, Ruiz, and Claver]Godard, C.;
Muñoz, B. K.; Ruiz, A.;
Claver, C. Pd-catalysed asymmetric mono-and bis-alkoxycarbonylation of
vinylarenes. Dalton Transactions 2008, 853–860.
[Drent and Budzelaar(1996)Drent, and Budzelaar]Drent, E.;
Budzelaar, P. H. Palladium-catalyzed alternating copolymerization of
alkenes and carbon monoxide. Chem. Rev. 1996, 96, 663–682.
[Dijk et al.(2002)Dijk, Ginkel, Oort, et al. others]
Dijk, R.; Ginkel, R.; Oort, B.; others The first example of palladium
catalysed non-perfectly alternating copolymerisation of ethene and carbon
monoxide. Chem. Comm. 2002, 964–965.
[Kiss(2001)]Kiss, G. Palladium-catalyzed Reppe carbonylation. Chem. Rev.
2001, 101, 3435–3456.
[King et al.(1978)King, Frazier, Hanes, and King Jr]King, R.;
Frazier, C.; Hanes, R.; King Jr, A. Active homogeneous catalysts for the
water gas shift reaction derived from the simple mononuclear carbonyls
of iron, chromium, molybdenum, and tungsten. J. Am. Chem. Soc. 1978,
100, 2925–2927.
[Pauson and Khand(1977)Pauson, and Khand]Pauson, P.; Khand, I. Uses of
Cobalt-Carbonyl Acetylene Complexes in Organic Synthesis. Ann. N. Y.
Acad. Sci. 1977, 295, 2–14.
[Blanco-Urgoiti et al.(2004)Blanco-Urgoiti, Añorbe, Pérez-Serrano, Domínguez, and Pérez-Castells]
Blanco-Urgoiti, J.; Añorbe, L.; Pérez-Serrano, L.; Domínguez, G.;
Pérez-Castells, J. The Pauson–Khand reaction, a powerful synthetic
tool for the synthesis of complex molecules. Chem. Soc. Rev. 2004, 33,
32–42.
[Harrod and Chalk(1977)Harrod, and Chalk]Harrod, J.; Chalk, A. In Organic
syntheses via metal carbonyls; Wender, I., Pino, P., Eds.; Wiley, New
York, 1977; Vol. 7; p 673.
[Uozumi and Hayashi(1991)Uozumi, and Hayashi]Uozumi, Y.;
Hayashi, T. Catalytic asymmetric synthesis of optically active 2-alkanols
via hydrosilylation of 1-alkenes with a chiral monophosphine-palladium
catalyst. J. Am. Chem. Soc. 1991, 113, 9887–9888.
[McKinney and Roe(1986)McKinney, and Roe]McKinney, R. J.; Roe, D. C.
The mechanism of nickel-catalyzed ethylene hydrocyanation. Reductive
elimination by an associative process. J. Am. Chem. Soc. 1986, 108,
5167–5173.
[Bath and Vaska(1963)Bath, and Vaska]Bath, S.; Vaska, L. Five-coordinate
hydrido-carbonyl complexes of rhodium and iridium and their analogy
with CoH (CO) 4. J. Am. Chem. Soc. 1963, 85, 3500–3501.
[O’Connor and Wilkinson(1968)O’Connor, and Wilkinson]
O’Connor, C.; Wilkinson, G. Selective homogeneous hydrogenation of
alk-1-enes using hydridocarbonyltris (triphenylphosphine) rhodium(I) as
catalyst. J. Chem. Soc. (A) 1968, 2665–2671.
[Yagupsky et al.(1969)Yagupsky, Brown, and Wikinson]
Yagupsky, G.; Brown, C.; Wikinson, G. Intermediates or their analogues
in hydroformylation of alkenes catalysed by hydridocarbonyltris
(triphenylphosphine) rhodium(I). J. Chem. Soc. D: Chem. Commun.
1969, 1244–1245.
[Halpern(1981)]Halpern, J. Mechanistic aspects of homogeneous catalytic
hydrogenation and related processes. Inorg. Chim. Acta 1981, 50, 11–19.
[Schrock and Osborn(1970)Schrock, and Osborn]Schrock, R.; Osborn, J.
Rhodium catalysts for the homogeneous hydrogenation of ketones. J.
Chem. Soc. D: Chem. Commun. 1970, 567–568.
[Schrock and Osborn(1976)Schrock, and Osborn]
Schrock, R. R.; Osborn, J. A. Catalytic hydrogenation using cationic
rhodium complexes. I. Evolution of the catalytic system and the
hydrogenation of olefins. J. Am. Chem. Soc. 1976, 98, 2134–2143.
[Burk et al.(1998)Burk, Allen, and Kiesman]Burk, M. J.;
Allen, J. G.; Kiesman, W. F. Highly regio-and enantioselective catalytic
hydrogenation of enamides in conjugated diene systems: synthesis and
application of γ, δ-unsaturated amino acids. J. Am. Chem. Soc. 1998,
120, 657–663.
[Jessop and Morris(1992)Jessop, and Morris]Jessop, P. G.; Morris, R. H.
Reactions of transition metal dihydrogen complexes. Coord. Chem. Rev.
1992, 121, 155–284.
[Zhang et al.(1994)Zhang, Uemura, Matsumura, Sayo, Kumobayashi, and Takaya]
Zhang, X.; Uemura, T.; Matsumura, K.; Sayo, N.; Kumobayashi, H.;
Takaya, H. Highly enantioselective hydrogenation of α,β-unsaturated
carboxylic acids catalyzed by H8-BINAP-Ru (II) complexes. Synlett
1994, 1994, 501–503.
[Linn Jr and Halpern(1987)Linn Jr, and Halpern]Linn Jr, D. E.;
Halpern, J. Roles of neutral and anionic ruthenium polyhydrides in the
catalytic hydrogenation of ketones and arenes. J. Am. Chem. Soc. 1987,
109, 2969–2974.
[Ng Cheong Chan and Osborn(1990)Ng Cheong Chan, and Osborn]
Ng Cheong Chan, Y.; Osborn, J. Iridium(III) hydride complexes for the
catalytic enantioselective hydrogenation of imines. J. Am. Chem. Soc.
1990, 112, 9400–9401.
[Hérisson and Chauvin(1971)Hérisson, and Chauvin]Hérisson, J.-L.;
Chauvin, Y. Catalyse de transformation des oléfines par les complexes
du tungstène. II. Télomérisation des oléfines cycliques en présence
d’oléfines acycliques. Macromol. Chem. Phys 1971, 141, 161–176.
[Zhu et al.(2020)Zhu, Chen, Fan, Yao, and Zhu]Zhu, D.; Chen, L.; Fan, H.;
Yao, Q.; Zhu, S. Recent progress on donor and donor–donor carbenes.
Chem. Soc. Rev. 2020, 49, 908–950.
[Koh et al.(2016)Koh, Nguyen, Zhang, Schrock, and Hoveyda]Koh, M. J.;
Nguyen, T. T.; Zhang, H.; Schrock, R. R.; Hoveyda, A. H. Direct
synthesis of Z-alkenyl halides through catalytic cross-metathesis. Nature
2016, 531, 459–465.
[Anderson et al.(2008)Anderson, Ung, Mkrtumyan, Bertrand, Grubbs, and Schrodi]
Anderson, D. R.; Ung, T.; Mkrtumyan, G.; Bertrand, G.;
Grubbs, R. H.; Schrodi, Y. Kinetic selectivity of olefin metathesis
catalysts bearing cyclic (alkyl)(amino) carbenes. Organometallics 2008,
27, 563–566.
[Reppe et al.(1948)Reppe, Schlichting, Klager, and Toepel]Reppe, W.;
Schlichting, O.; Klager, K.; Toepel, T. Cyclisierende polymerisation von
acetylen I über cyclooctatetraen. Liebigs Ann. 1948, 560, 1–92.
[Wilke et al.(1992)Wilke, Benn, Goddard, Krüger, and Pfeil]
Wilke, G.; Benn, H.; Goddard, R.; Krüger, C.; Pfeil, B. Intermediates
of the cyclotrimerization of 2-butyne with a chromium catalyst. Inorg.
Chim. Acta 1992, 198, 741–748.
[Hwang et al.(2008)Hwang, Cho, and Chang]Hwang, S. J.; Cho, S. H.;
Chang, S. Synthesis of condensed pyrroloindoles via Pd-catalyzed
intramolecular C- H bond functionalization of pyrroles. J. Am. Chem. Soc.
2008, 130, 16158–16159.
[Shi et al.(2008)Shi, Maugel, Zhang, and Yu]Shi, B.-F.; Maugel, N.;
Zhang, Y.-H.; Yu, J.-Q. PdII-Catalyzed Enantioselective Activation of
C(sp2)−H and C(sp3)−H Bonds Using Monoprotected Amino Acids as Chiral
Ligands. Angew. Chem. Int. Ed. 2008, 120, 4960–4964.
[Ackermann(2011)]Ackermann, L. Carboxylate-assisted
transition-metal-catalyzed C-H bond functionalizations: mechanism and
scope. Chem. Rev. 2011, 111, 1315–1345.
[Rogge et al.(2021)Rogge, Kaplaneris, Chatani, Kim, Chang, Punji, Schafer, Musaev, Wencel-Delord, Roberts, et al. others]
Rogge, T.; Kaplaneris, N.; Chatani, N.; Kim, J.; Chang, S.; Punji, B.;
Schafer, L. L.; Musaev, D. G.; Wencel-Delord, J.; Roberts, C. A.;
others C–H activation. Nat. Rev. 2021, 1, 43.
[Klankermayer et al.(2016)Klankermayer, Wesselbaum, Beydoun, and Leitner]
Klankermayer, J.; Wesselbaum, S.; Beydoun, K.; Leitner, W. Selective
catalytic synthesis using the combination of carbon dioxide and hydrogen:
catalytic chess at the interface of energy and chemistry. Angew. Chem.
Int. Ed. 2016, 55, 7296–7343.
[Tanaka et al.(2009)Tanaka, Yamashita, and Nozaki]
Tanaka, R.; Yamashita, M.; Nozaki, K. Catalytic hydrogenation of
carbon dioxide using Ir(III)-pincer complexes. J. Am. Chem. Soc. 2009,
131, 14168–14169.
[Tominaga and Sasaki(2000)Tominaga, and Sasaki]Tominaga, K.-i.;
Sasaki, Y. Ruthenium complex-catalyzed hydroformylation of alkenes
with carbon dioxide. Catal. Commun. 2000, 1, 1–3.
[Han et al.(2012)Han, Rong, Wu, Zhang, Wang, and Ding]
Han, Z.; Rong, L.; Wu, J.; Zhang, L.; Wang, Z.; Ding, K. Catalytic
hydrogenation of cyclic carbonates: a practical approach from CO2 and
epoxides to methanol and diols. Angew. Chem. Int. Ed. 2012, 51,
13041–13045.